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Practical section drawing through folded layers using sequentially rotated 
cubic interpolators 
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Abstract - -A new, simple and practical cubic interpolation method,  for use in microcomputer-aided section 
drawing, is presented. Apparent  dips at pairs of consecutive points are used to determine the cubic interpolator 
between them. The process is repeated sequentially to construct the layer trace. Overturned layers are 
accommodated by rotating the reference frame of the interpolator. The extra degree of freedom introduced by 
rotating can be constrained using known axial traces, borehole data, or layer thicknesses. Unlike the Busk 
construction (arcs and tangents) the fold class demanded by the data can be conserved in the interpolation; that 
is, the technique is not restricted to parallel folds, In the absence of constraining data the reference frame can be 
rotated so that the ordinate parallels the bisector of consecutive dips, producing a conservative interpolation even 
where layers are inverted. Alternatively the rotated cubic with the minimum arc-length can be sought, providing 
an objective 'minimum' strain estimate in bed-length balancing. 

INTRODUCTION 

CROSS-SECTIONS are useful for analysing structure above 
and below the topographic surface. Recently, more and 
more techniques have used them as a starting point for 
further interpretation, for example in section balancing 
(see e.g. Dahlstrom 1969) and depth to decollement 
estimates. Apart from the Busk construction (Busk 
1929), which is restricted to parallel folds, there are no 
repeatable and conservative methods in common usage 
for constructing cross-sections from dispersed data; 
indeed, most are drawn free-hand! 

In the other sciences systematic interpolation is widely 
used to constrain interpretations. Amongst the methods 
commonly used is the technique of cubic spline interpo- 
lation, introduced by Schoenberg (1946). It has, how- 
ever, been used sparingly by geologists and the 
mathematical complexity of the method requires use of 
a computer. A more important limitation to its use in 
section drawing is that the basic technique demands that 
values along the horizontal x-axis must continually 
increase, thus precluding interpolation of the closed and 
convolute curves common in geology. This problem can 
be overcome by using parametric cubic splines (Evans et 

al. 1985). However, this technique is only of use where 
the data comprise frequent digitised points along a fold 
profile, and not isolated apparent dips in the section 
plane. 

An alternative method, which is more suited to section 
data and overcomes the problem of convolutions, simply 
involves sequentially rotating the reference frame prior 
to interpolation. This simplifies the mathematics greatly, 
replacing the large matrix operations of cubic spline 
interpolation (for discussion see Marchuk 1982 and 
Johnson & Riess 1982), by the use of planar rotations 
and subsequent substitution into a few relatively simple 
equations. The calculations can be rapidly executed 
using a microcomputer or even a programmable cal- 
culator. This paper attempts to present this new and 

simple approach to objective section drawing using 
sequentially rotated cubic interpolators in a clear 
algorithm which is tested using real and synthetic data. 

BASIC CUBIC SPLINE INTERPOLATION 

Cubic spline interpolation in its basic form permits a 
smooth curve to be drawn through a string of discrete 
data points lying in a plane. Each segment of the curve 
between adjacent points is part of a cubic, a third degree 
polynomial of the form 

z =  ax 3 +  bx  2 + cx + d.  

(Unless otherwise stated the z-axis is vertical and the 
x-axis is horizontal.) A cubic is generally selected in 
basic spline interpolation for three reasons. Firstly, it is 
the lowest order polynomial where adjacent curved 
segments merge with continuous first and second deriva- 
tives. Secondly, higher orders need more computing 
time and can have spurious 'extra' turning points 
between the data. Thirdly, a tentative physical reason 
for using cubics is that they approximate the form 
adopted for the minimization of strain energy in an 
elastic rod (or spline--hence the name). 

An important limitation of the basic method is that 
successive points must have increasing values of x. This 
is perhaps one of the reasons why geologists have not 
fully exploited their usefulness, since, unmodified, the 
method cannot be used for complex cross-sections con- 
taining closed and convolute curves, with multiple values 
of z for a given value ofx. 

PARAMETRIC CUBIC SPLINE INTERPOLATION 

Evans et al. (1985) advocate the use of parametric 
cubic splines to overcome the problem of multiple values 
of z in geological curves. Their technique involves using 
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the continually increasing linear distance between suc- 
cessively digitised points on a known natural curve as a 
parameter against which the change in both x and z can 
be measured and interpolated separately. Although very 
useful for digitising layer traces from photographs or cut 
specimens, the technique cannot be used in unmodified 
form where the data comprise relatively isolated appar- 
ent dips along the topographic trace. Even when adapted 
to utilise slopes at isolated points (by rotating the inter- 
polation ordinate so it is normal to the chord between 
consecutive points) the results generally lie well outside 
the range of subjectively acceptable profiles. This is 
largely due to the strong influence of the orientation of 
the chord between consecutive points, which in a 
geological situation is more likely to be a function of 
erosion than of folding. Fortunately this data format, 
using slopes at isolated points, can be used in other ways 
while permitting the mathematics to be greatly 
simplified. 

ROTATED CUBIC INTERPOLATORS THROUGH 
KNOWN SLOPES 

In a given reference frame there is a unique cubic 
segment which can be drawn through two tangent points, 
but the orientation of the reference frame controls the 
form of the interpolated curve. Figure 1 shows four such 
curves and the orientation of w, a vector parallel to the 
ordinate axes of the interpolation. The procedure for 
constructing the curves is outlined in a general algorithm 
for determining points on the interpolating rotated cubic 
arc (Appendix 1). From Fig. 1 it is clear that the chosen 
orientation of w is critical in determining the form and 
length of the arc. Special orientations with interesting 
properties are now considered and their limitations and 
merits discussed. 

Vertical interpolation ordinates 

In most scientific applications where slopes at points 
are known, polynomial interpolation would proceed 
using vertical ordinates. However, this does not permit 
the construction of curves with multiple z-values for a 
given value of x, as commonly occurs in folded layers. If 
one attempts this type of interpolation for apparent dip 
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Fig. 1. Rotated cubic interpolators produced by rotation of w, a vector 
parallel to the interpolation ordinate, through 90, 75, 60 and 45 ° . 
Arc-length and morphology are strongly dependent  on the orientation 

of w. Slopes are specified at the two tangent points (open circles). 

O 

Fig. 2. (a) Slopes at three points (open circles) generate the curve in (b) 
when w is vertical and that in (c) when w parallels the acute bisector of 
consecutive slopes. The curve in (c) is more conservative in morphol- 
ogy than that in (b) which has an extra fold pair and a violation of 

younging direction at the central control point. 

data from overturned layers, as shown in Fig. 2, an extra 
fold pair is generated and younging direction is not 
conserved along the length of the interpolated trace. 
This is obviously unacceptable. 

Bisecting interpolation ordinates 

By rotating w to parallel the bisector of consecutive 
apparent dips, a very useful and realistic interpolation is 
generated. Using the data from Fig. 2(a), the cubic 
interpolation shown in Fig. 2(c) results when w is chosen 
to parallel the acute bisector. The objective choice 
between acute or obtuse bisector is simply the one which 
conserves younging direction along the interpolation. 
This is readily achieved by using the bisector which 
parallels the sum of the two unit younging vectors, 
(Yl + }I2), (see Fig. 3). In the case depicted in Fig. 3(b), 

y~ w ¥ 

Q 

v2. 
f 

Fig. 3. Construction of rotated cubic interpolators where w parallels 
the sum of consecutive unit younging vectors Y~ and Y2- Facing is 
conserved along the length of the curves. In (a) the resulting orienta- 
tion of w parallels the acute bisector of consecutive dips, whereas in (b) 
it parallels the obtuse bisector. The same pair of tangent points (open 

circles) is used in both (a) and (b). 
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Fig. 4. Cubic interpolators produced by rotation of w. The point of 
maximum curvature (dot) migrates along the line of small arrows. The 
critical orientation of w (w') is selected when this point lies on the 
known axial trace (heavy line). Slopes are specified at two points (open 

circles). 

if the two exposures are thought (from field evidence) to 
be linked continuously by a folded layer trace in the 
section, then data from the intermediate limb is obvi- 
ously missing (due to poor  exposure,  for example).  

Interpolation compatible with axial-trace data 

If the position and orientation of the axial trace in the 
section are known, then the point of maximum curvature 
(Cmax) of the interpolated curve can be migrated by 
rotating w until Cmax lies on the axial trace, i.e. when 
w = w' (Fig. 4). Although the axial trace is often sub- 
parallel to w' the two are not synonymous since one is a 
real line through hinges of folded layers whilst the other 
is an ordinate axis of an interpolating curve for a single 
layer trace. Adjacent  layers need not share the same w' ,  
but will share the same axial trace. If  only an orientation 
of the axial trace can be specified, however  (e.g. f rom 
stereographic orientation analysis), then a good approx- 
imation of the layer trace can be constructed by rotating 
w to parallel it. 

Interpolation compatible with borehole data 

Interpolat ion can be further constrained using 
borehole or outcrop data from which the location of the 
layer is known, but no orientation is attainable. Where  
such data are available the curve should be migrated by 
rotating w until it passes through the point where the 
layer trace is known to occur. Figure 5 depicts the 
migration of the curve until it passes through a specific 

Fig. 5. Cubic interpolators produced by rotation of w. The critical 
orientation of w (w') is selected when a specific point (dot) down a 
borehole (heavy line) lies on the curve. Slopes are specified at two 

points (open circles). 
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Fig. 6. Cubic interpolators produced by rotating w in steps through 
180 °. This produces a four-lobed pattern, two lobes of 'U-shaped' 
curves, one of 'S-shaped' curves and another of 'Z-shaped' curves. All 
satisfy the given slopes, but only the 'U-shaped' curves conserve the 
specified facing along their lengths. There is one critical 'U-shaped 
curve' which has minimum arc length (dashed). This critical minimum 

arc-length curve is in fact a rotated quadratic. 

point down a borehole.  If  a few points are known to lie 
on the curve, but no information about  their slopes is 
available, then the best curve could be selected by a 
least-squares approximation.  If  most of the data com- 
prises such discrete points then the parametric  method 
advocated by Evans et al. (1985) would be more appro- 
priate. 

Minimum arc-length interpolation 

If w is rotated through the range 0 = 0-180 °, and the 
cubic arcs determined,  then a pat tern similar to that in 
Fig. 6 is produced. Only the 'U-shaped '  arcs conserve 
the given younging directions along their lengths and of 
them there is one special one (dashed) which has the 
shortest arc-length. The critical w for a minimum arc- 
length (Wm~n) is not necessarily parallel to that which 
bisects the data, although is usually close to it. To 
determine the critical value of 0, it is necessary to sweep 
through values of 0 near that of the bisector, computing 
to stage 5a of the algorithm (see Appendix 1), since the 
length of a 'U-shaped '  arc tends to its minimum as the 
first coefficient, a, tends to zero. In fact the cubic is 
reduced to a rotated quadratic in this critical orientation. 
Once the critical value of 0 has been determined,  the rest 
of the algorithm is executed to construct the curve. The 
significance of this interpolation technique is that in the 
absence of extra information, a very conservative curve 
is constructed, which has a minimum cubic arc-length. 
Hence when combined with length-balancing a 
'minimum shortening'  estimate is produced. 

Interpolation compatible with fold class data 

If  it is possible to determine the class of folds (e.g. 
using the t" and q~ plots of Ramsay 1967 and Hudleston 
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Fig. 7. Curves of (a) t,', and (b) (p, for a regionally typical pair of 
N-S-facing fold limbs (taken from Hudleston 1973). (c) Known slopes 
at p~, P2 and P3 are used to construct sequentially rotated cubic 
interpolators which are compatible with the specified axial traces. This 
curve is chosen as a "reference-curve' as it has the most control. A fault 
(heavy vertical line) prevents the slope of a curve passing through the 
points q~ and q2 from being determined in the extreme south. To 
identify the form of this upper curve, while conserving fold class, dip 
isogons are projected from q l and q2 down to the reference-curve. The 
orthogonal thicknesses tt and t2 and the isogon orientations ~l and ~2 
are measured. Knowing a~, t~, a 2 and t 2, two very similar values of to 
are found from (a). The magnitude of the difference between the to 
values is a measure of the local suitability of the regional curves in (a) 
and (b). The mean value of t, is used to determine values of t~ from (a) 
for all values of a.  Values of ~ are determined from (b). (d) Dip 
isogons are projected from the reference curve, along which a is 
readily determined. The isogons lie at angles ~ ,  to the normals from 
the reference curve and have length t,  sec ~ .  Their ends lie on an 
interpolating curve through q~ and q2, which together with the refer- 
ence curve produces a layer which conforms with all the data from (a), 

(b) and (c). 

1973) from smaller scale or laterally equivalent folds, 
then interpolations can be made which conserve this fold 
class (Fig. 7). This is achieved by first constructing a 
'reference-curve', using rotated cubic interpolation, for 
the layer trace which has most control (Fig. 7c.). Strictly, 
the reference curve could be drawn by any interpolation 
method, but rotated cubics are mathematically very 
simple, permitting the first derivative (slope) to be easily 
determined at any point along the arc. Having con- 
structed the reference curve, dip isogons can then be 
drawn from points ql and q2 on an adjacent trace to it, 
permitting values of t, (the orthogonal thickness) and (p 

(the angle between an isogon and the normal to the 
reference curve) to be determined for the corresponding 
dips (aj and a2) at ql and q2- Knowing the curve for the 
limb on a t', plot, and an orthogonal thickness t, for a 
given dip, then a value for to can be determined. Using 
to, values of both t~ and (p~ can be read from the plots for 
all values of a and a smooth curve constructed through 
ql and q2 by projecting dip isogons of length t, sec ~ 
from the reference curve. 

If the t'~ curves exactly represented all the folds in a 
region, then the values for to derived from ql and q2 
would be the same, but in practical applications they 
would differ slightly. Two values of 6) would produce 
two close but distinct curves, one through q l and the 
other through q2, which would fail to meet at the hinge. 
This may be overcome by using the mean of the two 
values of to to ensure that the curves through ql and q2 
have coincident hinges. The magnitude of this error in to 
is dependent on the local suitability of the regional t', and 
~ curves. 

Unlike the Busk construction, rotated cubic interpola- 
tion is therefore not restricted to Class 1B folds. If data 
concerning fold class are available, the class can be 
conserved in the interpolation. 

PRACTICAL APPLICATION OF THE 
INTERPOLATION TECHNIQUES 

By sequentially rotating the reference frame, cubic 
interpolators become as flexible and simple as their 
physical analogue, the draughtsman's spline. Through a 
computer, digitising tablet and plotter, section drawing 
and restoring can become highly automated, precise and 
reproducible, whilst fully and conservatively utilising 
the data. It is, however, very important to recognise that 
such techniques must work alongside standard geologi- 
cal extrapolation and interpolation methods to make full 
use of the data. Such methods include projection of 
stratigraphic thicknesses, extrapolation of fold axes, 
stereographic orientation analysis and determination of 
the degree of thickening at hinges. The flexibility and 
compatibility of the rotated cubic arcs allows them to be 
used as an integral part of a totally objective section 
drawing package. Drawing a subjective free-hand profile 
wastes objectively argued controls. 

To test the accuracy of the rotated cubic interpolations 
the position and slopes of 40 points on six layer traces in 
a photograph from Weiss (1972, plate 84 A) were sam- 
pled (Fig. 8). Both the bisecting arcs and the arcs 
utililsing axial-trace data are marginally less conserva- 
tive than the minimum arc interpolation, but on the scale 
of the reproduction are practically indistinguishable. 
The interpolation is reassuringly accurate, whilst 
consistently tending to conservatism. A tighter repro- 
duction could have been achieved by constraining the 
curves through control at the hinges, but the object of 
this excercise is to illustrate that with minimal control 
(an average of only 2.5 data points per hinge) a very 
satisfactory interpolation can be made. A measure of the 
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Fig. 8. (a) Layer traces of folded graywackes taken from Weiss (1972, 
plate 84 A). The location and slopes of the layers were sampled at 40 
points (open circles). (b) The minimum arc-length interpolation 
through the data. The sum of the lengths of the interpolated traces is 
within 1.5% of the original with a data density as low as 2.5 points per 

hinge. 

arc-length cubic splines. This would permi t  the fo rmer  
(which is computa t iona l ly  quicker)  to substi tute the 
la t ter  in m a n y  instances.  Min imum arc- length curves are 
very useful for establishing an object ive  lower  limit to 
strain es t imates  in ba lanced sections. Addi t ional  data  
(e.g. the or ienta t ion  and location of  axial t races,  addi- 
t ional location points ,  and the fold class) can be fully 
exploi ted to constra in  the or ienta t ion  of the interpola-  
t ion ord ina te  and thus the length and m o r p h o l o g y  of the 
curve.  In the example  p resen ted ,  rotat ing w, so that  it (i) 
bisects consecut ive appa ren t  dips, (ii) genera tes  a 
m in imum arc- length curve and (iii) conforms  with axial 
t race data ,  all p roduce  very similar profiles which differ 
in arc- length f rom the original by less than 1.5%. This 
was p roduced  with da ta  densit ies as low as 2.5 points  per  
hinge. 

This set of  in terpola t ion techniques  should be used as 
an integral  par t  of  a totally object ive  section drawing 
package ,  fully utilising s tandard  sect ion-construct ion 
techniques  such as down-p lunge  and layer -normal  pro-  
ject ion of s t ra t igraphic  thicknesses,  s te reographic  orien- 
tat ion analysis and degree  of  layer  thickening or thin- 
ning. The  me thods  p resen ted  here  should be  used in the 
final stages of  section drawing,  for  systematical ly  inter- 
polat ing be tween  all the argued controls  while mainta in-  
ing the object ivi ty  of  the data.  
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accuracy of the in terpola t ion  is that  the sum of the 
lengths of  the in te rpo la ted  layer  t races  is within 1.5% of 
the original.  

CONCLUSIONS 

Practices such as f ree -hand  curve drawing squander  
objec t ive ly  gained data ,  leading to wide var ia t ions  in 
res tored  bed  length.  Cubic  splines in their  basic fo rm are 
of  little practical  use in section drawing because  they 
cannot  cope  with ove r tu rned  layers.  Pa ramet r i c  in terpo-  
lation can cope,  but  is most  appropr ia t e  where  the data  
are discrete c losely-spaced points.  T o  utilise the com-  
mon  data  f o rma t  of  appa ren t  dips in the section,  while 
coping with ove r tu rned  layers,  a new set of  me thods  
involving ro ta t ion  of the re fe rence  f rame  allows accurate  
though slightly conserva t ive  in terpola t ions  to be  made .  
The  necessary calculat ions in the m e t h o d  are far  s impler  
than those involved in the basic or  pa ramet r i c  
approaches ,  making  its use s imple.  

The  first me thod ,  using vertical  ord inates ,  is found to 
produce  a very poo r  in terpola t ion.  The  o the r  five 
methods ,  however ,  are very successful.  W h e n  the ordi- 
nate  is ro ta ted  so that  it bisects consecut ive  dips, a 
conservat ive  and realistic curve is p roduced  which is 
usually very close in m o r p h o l o g y  and length to m i n i m u m  
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APPENDIX I: GENERAL ALGORITHM FOR 
DETERMINING POINTS ON THE 

INTERPOLATING CURVE 

1. Input data pair (x i, z l, a t ) and (x2, z2, a 2). 
2. Input 0 so that: 

(i) w bisects a I and a2; 
(ii) interpolation is compatible with the axial trace; 

(iii) interpolation is compatible with borehole data, etc. ; 
(iv) minimum length arc can be found; that is, input an appro- 

priate range of 0, such that w approximately bisects a ~ and a 2 
and test when the first coefficient a --, 0. 
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3. Translate data pair to local origin (xl, zl ): () (x) 
Z i ~ Z '  i 

Oti a l 

X '  t = X i - -  X l ,  

Z~ = Z i - -  Z I , 

a ~  = a i ,  
(i = 1, 2). 

4. Rotate data pair through an angle 0: 

z ;  - ,  z'; 

\a,:/ 
x'/' = x; sin 0 - z; cos 0, 
z" = xl cos 0 + zl sin 0, 

a'[ = a i + 90 - O, 
(i = 1,2). 

5a. Determine the coefficient a of the interpolating cubic arc 
z " =  a(x") 3 + b(x") 2 + cx"(see Appendix2):  

(tan a]' + tan a~) x~ - 2z~ 
a - (xD3 

(minimum arc when a ---> 0). 
5b. Determine the remaining coefficients: 

b - 3z~ - (2tan a7 + tan a~)x~  

(xD2 

c = tan a]'. 

6. Sample arc by substituting values of x" at regular intervals 
between x" = x'{ = 0 and x" = x~. 

7. Reverse-rotate sampled (x", z")  co-ordinates: 

(:/ 

x'  = x" sin 0 + z" cos O, 
z'  = - x "  cos 0 + z" sin O. 

8. Reverse-translate the (x ' ,  z '  ) co-ordinates: 

(x) .(x 1 
X ~ X '  + X I ,  

Z = Z '  + Z 1, 

9. The output (x, z) co-ordinates now lie in the data reference frame 
on an interpolated cubic arc which has been rotated so that its ordinate 
is 0 anticlockwise from horizontal. 

10. The length of the arc is given by the standard integral 

L = ~ ~/{1 + (dz"/dx") z } dx", 

which can readily be approximated by the Trapezoidal or Simpson's 
rule. 

A P P E N D I X  2: D E T E R M I N I N G  T H E  

C O E F F I C I E N T S  a,  b a n d  c O F  T H E  

I N T E R P O L A T I N G  A R C  

After translating and rotating the data pair, the following four 
equations apply: 

z~' = a(x]') 3 + b(x'~) 2 + cx]' + d ,  

tan z~ = a(x~)  ~ + b(x~) 2 + cx~ + d ,  
a'; = 3a(x~):  + 2bx]' + c,  

tan a~ = 3a(x'~) z + 2bx~ + c. 

Since (x]', z]') lies at the origin the first two equations simplify to: 

d = 0  
and c = tan a]'. 

Solving the last two simultaneously gives: 

(tan a]' + tan a~)x~ - 2z~ 
a = (xD3 

b = 3z~ - (2 tan a]' + tan a~)x~ 
(xD 2 


